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Abstract. We report a systematic study of low-field galvanomagnetic properties of aluminium-
based dilute alloys with 3d and 4sp impurities. The low-field magnetoresistivity tensor is
determined by exactly solving the linearized Boltzmann equation for the anisotropic vector
mean free path, without using any adjustable parameter. Our method of calculation is based
on the on-Fermi-sphere approximation which allows us to combine the full anisotropy of the
host Fermi surface, obtained by the four-orthogonal-plane-wave method, with the impurity
scattering phase shifts, evaluated by self-consistent local-density-functional impurity-in-jellium
calculations. Our results for the Hall coefficient and the magnetoresistance are in good agreement
with the experimental data.

1. Introduction

The low-field galvanomagnetic coefficients, like the Hall coefficient and the magnetoresis-
tance, of dilute metallic alloys at low temperatures constitute valuable tools in the investiga-
tion of both the topography of the Fermi surface (FS) of the host crystal and the scattering
properties of the impurity atoms [1, 2].

In the case of aluminium-based alloys, although the free-electron model predicts a
constant Hall coefficient and zero magnetoresistance independent of the nature and strength
of the scattering mechanisms, important variations of these quantities with different solute
atoms are reported [3–14]. These deviations from the free-electron predictions are mainly
due to the scattering of the electronic states of the anisotropic parts of the host FS from the
impurity potential and have defied so far a consistent interpretation. Although aluminium is
a simple metal with a roughly spherical FS, there are important deviations from the spherical
shape with abrupt curvature variations near the Brillouin-zone boundaries. The fact that the
detailed structure of these strongly anisotropic regions plays the most decisive role in the
determination of the low-field galvanomagnetic coefficients [15] makes the calculation of
these quantities cumbersome.

An attempt to calculate low-field galvanomagnetic properties of aluminium-based dilute
alloys starting from the self-consistent solution of the linearized Boltzmann equation for
an anisotropic transport relaxation time was made by Böning et al [13, 14, 16, 17] and by
Yonemitsuet al [18]. In this approach, the four-orthogonal-plane-wave (4OPW) model was
used for the Al host [19], whereas the effective potential of the point defect was described
by pseudopotential form factors to first-order Born approximation. However, application of
this method was restricted to the case of sp impurities, where the weak-scattering conditions
justify the use of the Born approximation.

0953-8984/97/428997+10$19.50c© 1997 IOP Publishing Ltd 8997



8998 Ph Mavropoulos and N Stefanou

In this article we present a systematic study of low-field galvanomagnetic properties
of aluminium containing isolated 3d and 4sp impurities. Our theoretical method relies on
the so-called on-Fermi-sphere approximation [20], which allows us to combine the exact
topography of the host FS, described by the 4OPW model [19], with the scattering phase
shifts, obtained from self-consistent local-density-functional impurity-in-jellium calculations
[21]. This method involves an all-electron description of the impurity, which enables us to
reliably represent also the case of deep d potentials of the 3d impurity series for which an
OPW description is not suitable. Thus, weak sp- as well as strong d-resonance scattering
can be treated on the same footing. Within this framework, we calculate the matrix elements
of the magnetoresistivity tensor by exactly solving the linearized Boltzmann equation for
the anisotropic vector mean free path. For this purpose we use an efficient scheme based
on a Jones–Zener-like expansion at low magnetic fields [22], which leads to a hierarchy of
integro-differential equations [23], that we solve self-consistently by an iterative procedure.
We describe our theoretical method in section 2. Section 3 deals with some technical aspects
of the computation and in the last section we present and discuss our results.

2. Theory

We view a sample of the dilute alloy of volume� as a single-crystal aluminium matrix with
a very small fractionc of its N atomic sites occupied at random by impurity atoms. The
magnetoconductivity tensor,σ, describes the response of this system to a pair of external,
homogeneous fields, one electric,E , and one magnetic,B. Our approach is based on
Boltzmann transport theory. Under the action of the external fields, the system reaches a
steady state of dynamical equilibrium through various collision mechanisms. At sufficiently
low temperatures, the elastic, incoherent scattering of the FS electrons from isolated impurity
atoms is the dominant collision mechanism. The scattering probability rate between two
states|k〉 and |k′〉 on the FS (Ek = Ek′ = EF ) is given by

Pkk′ = 2πNc

h̄
|Tkk′ |2δ(Ek − Ek′) (1)

whereTkk′ is the corresponding element of the transition matrix describing the scattering
by a single impurity atom.

At not too high electric fields, we can appeal to linear response theory and write the
steady state current density,j, as

j = σ(B)E . (2)

On the other hand, the current density is determined by the deviation,gk, from the Fermi–
Dirac distribution function in the absence of external fields,f 0

k

j = 2e

�

∑
k

vkgk (3)

wheree = −|e| is the electron charge. Comparing (2) with (3) the matrix elements of the
magnetoconductivity tensor can be readily deduced. Therefore, the effort should be focused
on determininggk. To first order in the external electric field, the Boltzmann equation takes
the form [24]

e(vk · E)
∂f 0
k

∂Ek
+ e
h̄
(vk ×B) · ∇kgk =

∑
k′
(gk′ − gk)Pkk′ (4)
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where vk = ∇kEk/h̄ is the group velocity of Bloch electrons. In the linear-response
regime, we seekgk in the form

gk = −e ∂f
0
k

∂Ek
Λk(B) · E (5)

where Λk(B) represents an anisotropic vector mean free path, which depends on both
magnitude and direction of the magnetic field and is, in general, not parallel to the group
velocity. Using (1) and (5), (4) is transformed into a inhomogeneous linear, integro-
differential equation forΛk(B)

(cΛk(B) · uE)
�N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2 = (vk · uE)− e

h̄

(
vk × B

c

)
· ∇k(cΛk(B) · uE)

+ �N

4π2h̄2

∫
FS

dSk′

vk′
(cΛk′(B) · uE)|Tkk′ |2 (6)

whereuE is the unit vector along the direction of the electric field. A close inspection of
(6) reveals that the quantitycΛk(B) · uE depends on the magnitude of the magnetic field
through the ratioB/c. This form of dependence leads to the so-called Kohler rule [25],
which states that the galvanomagnetic coefficients are functions of the effective magnetic
field B/c. This scaling law is valid for any crystal symmetry and any magnitude of the
magnetic field, as long as quantization of the electron orbits or breakdown phenomena
do not occur. In a given dilute alloy, the functional dependence of the galvanomagnetic
coefficients onB/c is determined only by the type of defect and by the directions of the
external fields, since the defect concentration has been eliminated. Kohler’s rule is an exact
consequence of the linearized Boltzmann equation and of the assumption for a mechanism
of scattering from isolated defects of one specific type.

An efficient method to calculate the low-field magnetoconductivity tensor, avoiding
numerical instabilities, is based on the assumption that the quantitycΛk(B) · uE can be
approximated by a power series in the effective magnetic field [22, 23]

cΛk(B) · uE = ϕ(0)k + (B/c)ϕ(1)k + (B/c)2ϕ(2)k + · · · . (7)

Substituting (7) into (6) and equating terms of the same power ofB/c leads to the following
hierarchy of equations:

ϕ
(0)
k

�N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2 = (vk · uE)+ �N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2ϕ(0)k′ (8a)

ϕ
(1)
k

�N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2 = − e

h̄
(vk × u3) · ∇kϕ

(0)
k +

�N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2ϕ(1)k′ (8b)

ϕ
(2)
k

�N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2 = − e

h̄
(vk × u3) · ∇kϕ

(1)
k +

�N

4π2h̄2

∫
FS

dSk′

vk′
|Tkk′ |2ϕ(2)k′ (8c)

...

whereu3 is the unit vector in the direction ofB (x3 direction). The system of equations (8)
can be solved as follows. We first solve (8a) by iterations [26] and calculateϕ(0)k . Using
the result forϕ(0)k , (8b) can be solved iteratively to deduceϕ(1)k , etc. In principle one could
continue this procedure to obtain higher-order approximations for the mean free path, but
ϕ
(0)
k , ϕ(1)k andϕ(2)k suffice for the calculation of the low-field magnetoconductivity tensor to

leading order in the effective magnetic field. The direction of the electric field obviously
influencesϕ(0)k and thenϕ(1)k andϕ(2)k through the gradient terms, whereas the direction of
the magnetic field influences onlyϕ(1)k andϕ(2)k .
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Substituting (7) into (5), and using the resulting expression forgk in (3), we obtain a
power-series expansion for the magnetoconductivity tensor

σij (B) = 1

c
{σ (0)ij + (B/c)σ (1)ij + (B/c)2σ (2)ij + · · ·} (9)

with

σ
(n)
ij =

2e2

(2π)3h̄

∫
FS

dSk
vk
(vk)i(ϕ

(n)

k )j (10)

where (ϕ(n)k )j is the appropriate solution of (8) with the electric field oriented in the
xj direction. Having calculated the magnetoconductivity tensor up to order(B/c)2, we
can find by matrix inversion the magnetoresistivity tensorρ(B) = [σ(B)]−1.

A quantity measured directly by experiment is the resistivity component associated
with the direction ofj: [(ρ(B)j) · j]/j2. Its relative difference with respect to the
corresponding value of the resistivity in zero magnetic field defines the magnetoresistance,
D. Special arrangements of the magnetic field and the current distinguish between
longitudinal magnetoresistance,DL, and transverse magnetoresistance,DT . If B and j
are parallel we obtainDL by

DL = ρ33(B)− ρ33(0)

ρ33(0)
. (11)

If B andj are orthogonal, takingj in the x1 direction,DT is obtained from

DT = ρ11(B)− ρ11(0)

ρ11(0)
. (12)

Furthermore the Hall coefficient,RH , is given by

RH = (ρ(B)j) · (B × j)
j2B2

= ρ21(B)

B
. (13)

In crystals with cubic symmetry we haveσ (0)ij /c = σ0δij . Moreover from Onsager’s

reciprocity relationσij (B) = σji(−B) [27] it follows that the diagonal elements ofσ (1)ij

vanish. Taking these two properties into account, we obtain that in the low-field limit
RH tends to a constant,R0

H , whereasD is proportional to(B/c)2. Since the residual
resistivity in zero magnetic field,ρ0, (isotropic for cubic crystals) is proportional to the
defect concentration, one usually usesρ0, instead ofc, to scale the magnetic field. Thus we
write

DL = PL(B/ρ0)
2 (14)

DT = PT (B/ρ0)
2. (15)

If the magnetoconductivity tensor is expanded as a power series in the magnetic field,
with a view to characterizing the behaviour at low fields, the most general form allowed in
a cubic crystal, up to the quadratic terms, can be written [28]

j = σ0E + σ (1)α E ×B + σ (2)α B2E + σ (2)β (E ·B)B + σ (2)γ TE (16)

where the coefficientsσ (1)α , σ (2)α , σ (2)β andσ (2)γ are independent of the external fields andT
is a 3× 3 matrix, diagonal when referred to the cube axes, with the formTij = δijBiBj .
The first three terms of (16) describe a conductivity tensor that is isotropic with respect
to the orientation of the cube axes relative to the magnetic field, the fourth is relevant to
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longitudinal but not to transverse magnetoresistance, while the fifth introduces anisotropic
contributions. Inverting (16) we obtain up to second order in the magnetic field

E = ρ0j + ρ(1)α j ×B + ρ(2)α B2j + ρ(2)β (j ·B)B + ρ(2)γ Tj (17)

whereρ(1)α = −σ (1)α ρ2
0 is the low-field Hall coefficient,R0

H , and

ρ(2)α = −(σ (2)α + ρ0[σ (1)α ]2)ρ2
0

ρ
(2)
β = −(σ (2)β − ρ0[σ (1)α ]2)ρ2

0 (18)

ρ(2)γ = −σ (2)γ ρ2
0.

According to (17), bothR0
H andρ0 are isotropic in cubic metals and can be directly compared

with experimental results obtained on polycrystalline samples. This is not however the case
for the anisotropic coefficientsPL andPT .

3. Method of calculation

We construct the FS and Bloch wave-functions of the aluminium host by employing the
4OPW model [19], using the Fermi energy and the pseudopotential matrix elements which
were fitted by Coleet al [29] to the de Haas–van Alphen experimental data of Coleridge
and Holtham [30]. The FS of aluminium can be divided into three parts according to
their curvature: (i) a free-electron-like portion in the second zone with a slightly negative
curvature, which covers most of the FS; (ii) holelike cylinders also in the second zone, just
below the Brillouin-zone boundaries, with a high positive curvature, and (iii) toroid-like
portions in the third zone with a high negative curvature. The FS integrations involved
in (8) and (10) are performed by generating a system of triangles using, per irreducible
part (1/48th) of a Brillouin zone, 1001 points on the second zone and 656 points on the
third zone, and then applying a first-order integration rule within each triangle. Special
care has been taken in the highly curved regions of the FS, by using a denser mesh. The
gradient terms in (8) are calculated as follows. For each pointk of the FS mesh, we define
two neighbouring points,k ± 1k with 1k taken in the direction ofvk × u3, and solve
equations (8) also for these neighbouring points. The three points are so close that we can
assume that they lie on a straight line, neglecting the curvature of the FS. We then employ
locally a second-order interpolation forϕ(0)k andϕ(1)k and obtain(vk × u3) · ∇kϕk at each
of these points, to be used in the subsequent equation. Of course, forϕ(2) only the gradient
of ϕ(1) at pointsk is needed, whereas the gradient ofϕ(0) is needed at the neighbouring
points as well. The accuracy of this procedure was tested by increasing the number of
neighbouring points and, accordingly, the order of interpolation, and the results were found
to be stable to within about 1%.

In order to calculate the transition matrixTkk′ we proceed further by using the on-Fermi-
sphere approximation, according to which the crystal lattice pseudopotential is ignored
during the scattering of the electrons by the impurity atom [20]. Therefore the problem is
reduced to the evaluation of the phase shifts,δl , associated with the scattering of a single
plane wave from the impurity potential. In this approximation the transition matrix is given
by

Tkk′ = − 4
√

2π2h̄3

m3/2E
1/2
F �

∑
lm

exp{iδl(EF )} sinδl(EF )clm(k)c
∗
lm(k

′) (19)

where l and m denote angular momentum quantum numbers andclm(k) are expansion
coefficients determined from the 4OPW eigenvectors [26].
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We obtain the scattering phase shifts by calculating the electronic structure of an isolated
impurity in a jellium having the electron density of Al. Within this model, a substitutional
impurity is described by creating a spherical hole with the volume of the aluminium Wigner–
Seitz cell (V = 9π2(h̄2/2mEF )3/2) in the jellium positive background and inserting the
nuclear charge of the impurity in the centre of this vacancy. The electronic structure is
calculated self-consistently within the framework of density-functional theory, using a Green
function technique [21]. Exchange and correlation effects are included through the local-
density approximation with the parametrization of Voskoet al [31]. A range of perturbing
impurity potentialS = 10 au and an angular momentum cutofflmax = 3 are sufficient to
obtain adequate convergence in all cases examined.

4. Results and discussion

We calculated the matrix elements of the low-field magnetoresistivity tensor for aluminium-
based dilute alloys with 3d and 4sp impurities, using the method described in the previous
sections. We considered the external magnetic field oriented in the [001] and in the
[111] directions of a single fcc crystal. The symmetry properties of linear transport
coefficients have been discussed by Kleiner [32] in a general way. In a cubic system,
if the external magnetic field is parallel to the [001] or the [111] crystallographic direction,
the magnetoresistivity tensor in the basis (u1, u2, u3) has the following form:

ρ =
(
ρ⊥ −ρH 0
ρH ρ⊥ 0
0 0 ρ‖

)
. (20)

In this case, the transverse magnetoresistance equals(ρ⊥(B)−ρ0)/ρ0, independently of the
direction of the electric field.

Our results for the low-field Hall coefficient turn out to be independent of the direction
of the magnetic field, as expected for cubic crystals. The systematic variation ofR0

H within
the considered series of impurities has been extensively analysed in an earlier work [26].
While for 3d impuritiesR0

H is quite insensitive to the phase shifts and slowly increases with
the impurity atomic number, in the case of 4sp impurities it is extremely sensitive to the
balance between s and p scattering. Thus any attempt to explain the trends in the numerical
results for the 4sp impurities becomes meaningless. In figure 1 we show the calculated low-
field Hall coefficient for all the 3d impurities, together with the experimental data [3, 4, 13]
and the results of a previous calculation [26]. The only difference between previous and
present calculations is that the former explicitly assumes that the vector mean free path is
parallel to the group velocity of the corresponding Bloch electron states, whereas the present
method is free from this approximation. The present results compared with the previous
ones show the same trends, although they are systematically somewhat lower. As can be
seen from figure 1, the previous results are in better agreement with experiment for Sc, Ti,
V, and Cu, while the present ones agree better for the rest of the series. Therefore, taking
also into account the experimental uncertainties [33], it is difficult to conclude whether the
present more sophisticated method works better, or not.

Figure 2 shows our results for the low-field transverse-magnetoresistance coefficient,
for two different directions of the magnetic field: [001] and [111]. We see that all the
considered dilute alloys show systematically a higher magnetoresistance when the magnetic
field is in the [111] direction than when it is in the [001] direction. Nevertheless the
same qualitative trends ofPT can be observed for both directions of the magnetic field.
The low-field transverse-magnetoresistance coefficient versus the impurity atomic number
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Figure 1. The low-field Hall coefficient of aluminium containing single 3d and 4sp substitutional
impurities (solid line). The triangles show the experimental data [3, 4,13]. The broken line shows
the results obtained in [26].

Figure 2. The low-field transverse-magnetoresistance coefficient of aluminium containing single
3d and 4sp substitutional impurities, for two different directions of the magnetic field: [001]
and [111] (solid lines). The triangles show the experimental data obtained on polycrystalline
samples [4–6, 9, 11].

slowly decreases within the 3d series, then it abruptly increases in the crossover from the
3d to the 4sp series and, finally, it again decreases slowly as we move along the 4sp series.

In the case of 3d impurities, it is reasonable to assume that the impurity is essentially
screened by d electrons. Thus, keeping fixed the s and p phase shifts at the Fermi level
to their values for Cr impurity and using the actual d phase shifts atEF , we obtain no
appreciable difference in the calculated values ofPT . Therefore we conclude that, in the
case of d dominant scattering, small variations of the s and p screening charge do not play
an important role.
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Figure 3. The average low-field transverse-magnetoresistance coefficient of aluminium
containing single 3d and 4sp substitutional impurities (solid line). The triangles show the
experimental data [4–6, 9, 11].

Setting all the phase shifts atEF , except one of a given symmetryl0, equal
to zero, the specific form (19) of the transition matrix implies that the quantities
ϕ
(n)

k sin2n+2 δl0(EF ), n = 0, 1, 2, . . ., obtained by solving the hierarchy of equations (8),
remain constant, irrespectively of the value ofδl0(EF ). Therefore, from (10) it follows that
also σ (n)ij sin2n+2 δl0(EF ) are constant and, from the definition of the magnetoresistance, it
can be shown after some straightforward algebra that a constantPT is obtained. For the
magnetic field in the [001] direction for instance, having only the d phase shift different
from zero, we calculatePT = 8.4(n� cm kG−1)2. This is roughly equal to the low-field
transverse-magnetoresistance coefficient in the 3d series of impurities. If only the p phase
shift is different from zero we obtainPT = 49.7(n� cm kG−1)2. This relatively large
value ofPT justifies its jump to higher values in the crossover from 3d to 4sp impurities.
However, the low-field transverse-magnetoresistance coefficient does not vary in such an
abrupt, stepwise manner when we go from d to p dominant scattering. If the contribution
of all the scattering channels (s, p, d,. . .) is taken into account, this transition is smoothed
and the results shown in figure 2 are obtained.

In order to compare our results for the low-field magnetoresistance with experimental
data obtained on polycrystalline samples, the proper average over all possible orientations of
the crystallites with respect to the external fields should be considered. Following Beaulac
and Allen [34], such an average is given by [35]

〈PT 〉 = ρ0(ρ
(2)
α + 1

5ρ
(2)
γ ) (21a)

〈PL〉 = ρ0(ρ
(2)
α + ρ(2)β + 3

5ρ
(2)
γ ) (21b)

whereρ(2)α , ρ(2)β , andρ(2)γ are defined through (16), (17) and (18). Using the calculated values
of the matrix elements of the magnetoconductivity tensor for the two different directions
of the magnetic field that we considered, we can deduce the constant parameters entering
in (16) and, consequently, calculate〈PT 〉 and 〈PL〉 from (21). The results obtained for
the average low-field transverse-magnetoresistance coefficient are shown in figure 3. We
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can see that〈PT 〉 lies between the calculatedPT for B‖[001] andB‖[111], and that the
agreement with experiment is good.

As far as the low-field longitudinal magnetoresistance is concerned, there are only
limited experimental data available. Yonemitsuet al [9] observed thatPL is only just
over half of PT in Al containing Ga, Ge, or Ag impurities. Our calculation confirms
qualitatively this observation since we find that, for the impurities that we have considered,
the ratio PT /PL ranges from 1.5 to 1.7. However, for Ga and Ge we obtainPL =
16.6(n� cm kG−1)2 andPL = 20.6(n� cm kG−1)2, respectively, which is somewhat larger
than the corresponding measuredPL: 12(n� cm kG−1)2 and 14(n� cm kG−1)2.
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[11] Rosner P, Sieber G and Böning K unpublished results listed in table 2 of [17]
[12] Kesternich W, Ullmaier H and Schilling W 1976J. Phys. F: Met. Phys.6 1867
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